The

Complete
Reference

 Function Overloading,
Copy Constructors,
and Default Arguments

359

360

C++: The Complete Reference

his chapter examines function overloading, copy constructors, and detault

arguments. Function overloading is one of the defining aspects of the C++

programming language. Not only does it provide support tor compile-time
polymorphism, it also adds flexibility and convenience. Some of the most commonly
overloaded functions are constructors. Perhaps the most important form of an overloaded
constructor is the copy constructor. Closely related to function overloading are detault
arguments. Default arguments can sometimes provide an alternative to function
overloading,.

Function Overloading

Function overloading is the process of using the same name tor two or more tunctions.
The secret to overloading is that each redefinition of the function must use either
different types of parameters or a different number of parameters. It is only through
these differences that the compiler knows which function to call in any given situation.
For example, this program overloads myfunc() by using different types of parameters.

#include <iostream>
using namespace std;

int myfunc(int i): // these differ in types of parameters
double myfunc (double i) :

int main()

{
cout << myfunc(l0) << " "; /; calls myfunc (int i)
cout << myfunc(5.4); // calls myfunc (double i)

return 0;

double myfunc (double i)
{

return i:

int myfunc (int i)

{
L

return i;

Chapter 14: Function Overloading, Copy Constructors, and Default Arguments

The next program overloads myfunc() using a different number of parameters:

#include <iostream>
using namespace std;

int myfunc(int i); // these differ in number of parameters
int myfunc(int i, int j);

int main()
{

cout << myfunc(1l0) << " "; // calls myfunc(int i)
cout << myfunc(4, 5); // calls myfunc(int i, int 7j)
return 0;

int myfunc(int 1)
{

return . ;

int myfunc(int i, int 7j)
{

return 1*j;

As mentioned, the key point about function overloading is that the functions must
differ in regard to the types and/or number of parameters. Two functions differing
only in their return types cannot be overloaded. For example, this is an invalid attempt
to overload myfunc():

int myfunc(int 1i); // Error: differing return types are
float myfunc(int 1i); // insufficient when overloading.

Sometimes, two function declarations will appear to differ, when in fact they do not.
For example, consider the following declarations.

void f(int *p);
void f(int p(]); // error, *p is same as pl]

Remember, to the compiler *p is the same as pl[1. Therefore, although the two
prototypes appear to differ in the types of their parameter, in actuality they do not.

362 C++:The Complete Reference

__| overloading Constructors

Constructors can be overloaded; in fact, overloaded constructors are very common.
There are three main reasons why you will want to overload a constructor: to gain
flexibility, to allow both initialized and uninitialized objects to be created, and to
define copy constructors. In this section, the first two of these are examined. The
following section describes the copy constructor.

Overloading a Constructor to Gain Flexibility

Many times you will create a class for which there are two or more possible ways to
construct an object. In these cases, you will want to provide an overloaded constructor
for each way. This is a self-enforcing rule because if you attempt to create an object for
which there is no matching constructor, a compile-time error results.

By providing a constructor for each way that a user of your class may plausibly
want to construct an object, you increase the flexibility of your class. The user is free to
choose the best way to construct an object given the specific circumstance. Consider
this program that creates a class cailed date, which holds a calendar date. Notice that
the constructor is overloaded two ways:

#include <iostream>
#include <cstdio>
using namespace std;

class date {
int day, month, year;
public:

date (char *a);

3

date (int m, int &, 2

=
<

vold show_date() ;
b

// Initialize using string.
date: :date(char *d)
{

sscanf(d, "$d%*c%d%*c%d", &month, &day, &year);

// Initialize using integers.
date::date{int m, int d, int y)

{

Chapter 14: Function Overloading, Copy Constructors, and Default Arguments 363

day = d;
month = m;
vear = y;

void date: :show_date ()
{
cout << month << "/" << day;

cout << "/" << year << "\n";

int main()
{
date obl(12, 4, 2003), ob2("1¢/22/2003");

obl.show_date () ;
ob2.show_date();

return 0;

In this program, you can initialize an object of type date, either by specifying the
date using three integers to represent the month, day, and year, or by using a string
that contains the date in this general form:

mm/ddfyyyy

Since both are common ways to represent a date, it makes sense that date allow both
when constructing an object.

As the date class illustrates, perhaps the most common reason to overload a
constructor is to allow an object to be created by using the most appropriate and
natural means for each particular circumstance. For example, in the following main(),
the user is prompted for the date, which is input to array s. This string can then be used
directly to create d. There is no need for it to be converted to any other form. However,
if date() were not overloaded to accept the string form, you would have to manually
convert it into three integers.

int main()

{
char s[80];

364

C++: The Complete Reference

cout << "Enter new date: ";

cin >>» s;

date d{s);
d.show_date () ;

return 0;

In another situation, initializing an object of type date by using three integers
may be more convenient. For example, if the date is generated by some sort of
computational method, then creating a date object using date(int, int, int) is the most
natural and appropriate constructor to employ. The point here is that by overloading
date’s constructor, you have made it more flexible and easier to use. This increased
flexibility and ease of use are especially important if you are creating class libraries
that will be used by other programmers.

Aliowing Both Initialized and Uninitialized Objects

Another common reason constructors are overloaded is to allow both initialized and
uninitialized objects (or, more precisely, default initialized objects) to be created. This
is especially important if you want to be able to create dynamic arrays of objects of
some class, since it is not possible to initialize a dynamically allocated array. To allow
uninitialized arrays of objects along with initialized objects, you must include a
constructor that supports initialization and one that does not.

For example, the following program declares two arrays of type powers; one is
initialized and the other is not. It also dynamically allocates an array.

#include <iostream>
#include <new>
using namespace std;

class powers {

int x;

public:
{7/ overload constructor two ways
powers () { x = (; } // no initia.izer
powers{int n) { x = n; } ¢/ initializex

int getx() { return x; }

vold setx(int i) { = = 1

Chapter 14: Function Overloading, Copy Constructors, and Default Arguments 365

}i

int main()
‘

powers ofTwo([] = {1, 2, 4, 8, 16}; // initielized
powers ofThree[5]; // uninitialized
powers *p;

i

int 1;

// show powers c¢f two
cout << "Powers of two: ";
for(i=0; i<5; i++) {

cout << ofTwoli].getx() << " ";
}

cout << "\n\n";

// set powers of three
ofThree[0] .setx (1) ;
ofThree[l].setx(3);

(3
ofThree(2] .setx(9) ;
ofThree{3} .setx(27);
ofThree(4] .setx(81)

// show powers of three
cout << "Powers of three: ;
for(i=0; i<5; 1++) {

cout << ofThree[i].getx() << " ";
}

cout << "An\n";

// dynamically allocate an array
try {
P = new powers{5]; // no initialization
} catch (bad_allcc xa) {
cout << "Allocation Failure\n";
return 1;

// initialize dynamic array with powers of two
for(i=0; i<5; i++) {
pli].setx(ofTwo[i].getx());

366

B

C++: The Complete Reference

'/ show powers of two
"

cout << "Powers of two: ;

for(i=0; 1i<5; 1i++) {

cout << pl[i].getx() << " *;
}
cout << "‘n\n";
delete [] p;

return 0O;

In this example, both constructors are necessary. The default constructor is used to
construct the uninitialized ofThree array and the dynamically allocated array. The
parameterized constructor is called to create the objects for the of Two array.

Copy Constructors

One of the more important forms of an overloaded constructor is the copy constructor.
Defining a copy constructor can help vou prevent problems that might occur when
one object is used to initialize another.

Let's begin by restating the problem that the copy constructor is designed to solve.
By default, when one object is used to initialize another, C++ performs a bitwise copy.
That is, an identical copy of the initializing object is created in the target object.
Although this is perfectly adequate for many cases—and generally exactly what you
want to happen—there are situations in which a bitwise copy should not be used.
One of the most common is when an object allocates memory when it is created. For
example, assume a class called MyClass that allocates memory for each object when
it is created, and an object A of that class. This means that A has already allocated its
memory. Further, assume that A is used to initialize B, as shown here:

MyClass B = A;

If a bitwise copy is performed, then B will be an exact copy of A. This means that B
will be using the same piece of allocated memory that A is using, instead of allocating
its own. Clearly, this is not the desired outcome. For example, if MyClass includes a
destructor that frees the memory, then the same piece of memory will be freed twice
when A and B are destroyed!

The same type of problem can occur in two additional ways: first, when a copy of
an object is made when it is passed as an argument to a function; second, when a
temporary object is created as a return value from a function. Remember, temporary

Chapter 14: Function Overloading, Copy Constructors, and Default Arguments 367

objects are automatically created to hold the return value of a function and they may
also be created in certain other circumstances.

To solve the type of problem just described, C++ allows you to create a copy
constructor, which the compiler uses when one object initializes another. Thus, your
copy constructor bypasses the default bitwise copy. The most common general form
of a copy constructor is

classname (const classname &o) |
// body of constructor

|

Here, 0 is a reference to the object on the right side of the initialization. It is permissible
for a copy constructor to have additional parameters as long as they have default
arguments defined for them. However, in all cases the first parameter must be a reference
to the object doing the initializing.

[t is important to understand that C++ defines two distinct types of situations in
which the value of one object is given to another. The first is assignment. The second is
initialization, which can occur any of three ways:

W When one object explicitly initializes another, such as in a declaration

B When a copy of an object is made to be passed to a function

B When a temporary object is generated (most commonly, as a return value)
The copy constructor applies only to initializations. For example, assuming a class

called myclass, and that y is an object of type myclass, each of the following statements
involves initialization.

myclass x = y; // y explicitly initializing x
func(y); // y passed as a parameter
y = func{(); // y recelving a temporary, return object

Following is an example where an explicit copy constructor is needed. This program
creates a very limited "safe” integer array type that prevents array boundaries from
being overrun. (Chapter 15 shows a better way to create a safe array that uses
overloaded operators.) Storage for each array is allocated by the use of new, and a
pointer to the memory is maintained within each array object.

/* This program creates a "safe" array class. Since space
for the array is allocated using new, a copy constructor
is provided to allocate memory when one array object is
used to initialize another.

368 C(++: The Complete Reference

#include <iostream>
#include <new>
#include <cstdlib>
using namespace std;

class array {

int *p;
int size;
public:
array{int sz) {
try |
p = new intl[sz];

} catch (bad_allcec xa) {
cout << "Allocation Failure\n";
ex1lt (EXIT_FAILURE) ;

}
size = sz;
}
~array () { delete {] p; }

// copy constructor
array(const array &a);

void put(int i, int J) {
if(i>=0 && i<size) pli] = 3;
}
int get(int 1) {
return plil;

T

// Copy Constructor
array::array(const array &a) {
int 1i;

try {
p = new intla.sizel;

} catch (bad_alloc xa) {
cout << "Allocation Failure\n";
exit (EXIT_FAILURE) ;

}

for(i=0; i<a.size; i++) pli] = a.pli];

Chapter 14: Function Overloading, Copy Constructors, and Default Arguments 369

int main()

{
array num(10);
int 1i;

for(i=0; i<10; i++) num.put{i, 1);
for(1=9; 1i>=0; 1i--) cout << nun.get{i);
cout << “\n";

// create another array and initialize with nur
array x(rnum); // invokes copy zonstructor

for (i=0; i<10; 1++) cout << x.get{i);

return 0O;

Let's look closely at what happens when num is used to initialize x in the statement

array x(num); // invokes copy coastructor

The copy constructor is called, memory for the new array is allocated and stored in x.p,
and the contents of num are copied to x’s array. In this way, x and num have arrays
that contain the same values, but each array is separate and distinct. (That is, num.p
and x.p do not point to the same piece of memory.) If the copy constructor had not been
created, the default bitwise initialization would have resulted in x and num sharing the
same memory for their arrays. (That is, num.p and x.p would have indeed pointed to
the same location.)

Remember that the copy constructor is called only for initializations. For example,
this sequence does rot call the copy constructor defined in the preceding program:

array a(leC):

arrav b{10);

In this case, b = a performs the assignment operation. If = is not overloaded (as it is not
here), a bitwise copy will be made. Therefore, in some cases, you may need to overload
the = operator as well as create a copy constructor to aveid certain types of problems
(see Chapter 15).

370

C++: The Complete Reference

Finding the Address of an Overloaded Function

As explained in Chapter 5, you can obtain the address of a function. One reason to
do so is to assign the address of the function to a pointer and then call that function
through that pointer. If the function is not overloaded, this process is straightforward.
However, for overloaded functions, the process requires a little more subtlety. To
understand why, first consider this statement, which assigns the address of some
function called myfunc() to a pointer called p:

If myfunc() is not overloaded, there is one and only one function called myfunc(),
and the compiler has no difficulty assigning 1ts address to p. However, if myfunc() is
overloaded, how does the compiler know which version’s address to assign to p? The
answer is that it depends upon how p is declared. For example, consider this program:

#include <iostream>

using namespace std;

int myfunc(int a);
int myfunc(int a, int b);

int main()

{
int (*fp) (int a); // pointer to int f(int)
fp = myfunc; // points to myfunc(int)

cout << fp(5);

return 0;

int myfunc(int a)

{

return a;

int myfunc(int a, int b)
{

return a*b;

Chapter 14: Function Overloading, Copy Constructors, and Default Arguments

|

Here, there are two versions of myfunc(). Both return int, but one takes a single
integer argument; the other requires two integer arguments. In the program, fp is
declared as a pointer to a function that returns an integer and that takes one integer
argument. When fp is assigned the address of myfunc(), C++ uses this information
to select the myfunc(int a) version of myfunc(). Had fp been declared like this:

int (*fp) (int a, int b);

then fp would have been assigned the address of the myfunc(int a, int b) version of
myfunc().

In general, when you assign the address of an overloaded function to a function
pointer, it is the declaration of the pointer that determines which function’s address
is obtained. Further, the declaration of the function pointer must exactly match one
and only one of the overloaded function's declarations.

The overload Anachronism

When C++ was created, the keyword overload was required to create an overloaded
function. It is obsolete and no longer used or supported. Indeed, it is not even a
reserved word in Standard C++. However, because you might encounter older
programs, and for its historical interest, it is a good idea to know how overload
was used. Here is its general form:

overload func-name;

Here, func-name is the name of the function that you will be overloading. This
statement must precede the overloaded declarations. For example, this tells an
old-style compiler that you will be overloading a function called test():

overload test;

Default Function Arguments

C++ allows a function to assign a parameter a default value when no argument
corresponding to that parameter is specified in a call to that function. The default value
is specified in a manner syntactically similar to a variable initialization. For example,
this declares myfunc() as taking one double argument with a default value of 0.0:

void myfunc (double d = 0.0)

{
//

371

372 C++:The Complete Reference

Now, myfunc() can be called one of two ways, as the following examples show:

myfunc(198.234); / pass an explicit value

myfunc{) ; "/ let function use default

The first call passes the value 198.234 to d. The second call automatically gives d the
default value zero.

One reason that default arguments are included in C++ is because they provide
another method for the programmer to manage greater complexity. To handle the
widest variety of situations, quite frequently a function contains more parameters than
are required for its most common usage. Thus, when the default arguments apply, you
need specify only the arguments that are meaningful to the exact situation, not all those
needed by the most general case. For example, many of the C++ 1/0 functions make
use of default arguments for just this reason.

A simple illustration of how useful a default function argument can be is shown by
the clrscr() function in the following program. The clrscr() function clears the screen
by outputting a series of linefeeds (not the most efficient way, but sufficient for this
example). Because a very common video mode displays 25 lines of text, the default
argument of 25 is provided. However, because some video modes display more or less
than 25 lines, you can override the default argument by specifying one explicitty.

#include <iostreamn>
using namespace std:

void clrscr(int size=25);
int mainf()
{
register int i;
for(i=0; i<30; i+-) cout << i << endl;
cin.get();
clrscri); // clears 2% lines
for(i=0; 1i<30C; i+-)} cout << i << endl;
cin.get () ;
clrscr(10); // clears 10 lines

return 0;

Chapter 14: Function Overloading, Copy Constructors, and Default Arguments

As this program illustrates, when the default value is appropriate to the situation,
no argument need be specified when clrscr() is called. However, it is still possible to
override the default and give size a different value when needed.

A default argument can also be used as a flag telling the function to reuse a
previous argument. To illustrate this usage, a function called iputs() is developed here
that automatically indents a string by a specified amount. To begin, here is a version of
this function that does not use a default argument:

void iputs{char *str, int indent)

I8

if(indent < 0) indent = 0;
for(; indent; indent--; cout << " ",
cout << tr << "'y

This version of iputs() is called with the string to output as the first argument and
the amount to indent as the second. Although there is nothing wrong with writing iputs()
this way, you can improve its usability by providing a default argument for the indent
parameter that tells iputs() to indent to the previously specified level. 1t is quite common
to display a block of text with each line indented the same amount. In this situation,
instead of having to supply the same indent argument over and over, you can give
indent a default value that tells iputs(} to indent to the level of the previous call. This
approach is illustrated in the following program:

#include <iostream>

using namespace std;

q

'+ Default indent to -1. This ralue tells the function

to reuse the previous va

void iputs{char *str, int

iputs{"Hello

iputst "This

373

374 C++:The Complete Reference

iputs("This will ke indented 5 spaces", 5);
iputs ("This 1s not indented", Q)

return 0;
void iputs{char *str, int indent)
{
static 1 = 0; // holds previous indent value
if (indent >= 0)
i = indent;
else // reuse old indent value
indent = i;

for(; indent; indent--) cout << " ";

cout << str << "\n";

This program displays this output:

Hello there
This will be indented 10 spaces by default
This will be indented 5 spaces
This is not indented

When you are creating functions that have default arguments, it is important to
remember that the default values must be specified only once, and this must be the
first time the function is declared within the file. In the preceding example, the default
argument was specified in iputs()'s prototype. If you try to specify new (or even the
same) default values in iputs()'s definition, the compiler will display an error and not
compile your program. Even though default arguments for the same function cannot
be redefined, you can specify different default arguments for each version of an
overloaded function.

All parameters that take default values must appear to the right of those that do
not. For example, it is incorrect to define iputs() like this:

// wrong!

void iputs(int indert = -1, char *str);

Chapter 14: Function Overloading, Copy Constructors, and Default Arguments

Once you begin to define parameters that take default values, you cannot specify
a nondefaulting parameter. That is, a declaration like this is also wrong and will
not compile:

int myfunc(float f, char *str, irt 1=10, int 3);

Because i has been given a default value, j must be given one too.

You can also use default parameters in an object’s constructor. For example, the
cube class shown here maintains the integer dimensions of a cube. Its constructor
defaults all dimensions to zero if no other arguments are supplied, as shown here:

#include <iostreamnm>

using namespace std;

class cube {
int %, y, z;
public:
cube (int 1=0, int j=0, int k=0} {

int volume() {
return x*y*z;

int main()

{

[\

cube al

cout << a.volume() << endl;

cout: << b.volume();

return 0;

There are two advantages to including default arguments, when appropriate, in a
constructor. First, they prevent you from having to provide an overloaded constructor
that takes no parameters. For example, if the parameters to cube() were not given

375

376 C++: The Complete Reference

defaults, the second constructor shown here would be needed to handle the declaration
of b (which specified no arguments).

Second, defaulting common initial values is raore convenient than specifying them
each time an object is declared.

Default Arguments vs. Overloading

In some situations, default arguments can be used as a shorthand form of function
overloading. The cube class's constructor just shown is one example. Let's look at
another. Imagine that you want to create two customized versions of the standard
streat() function. The first version will operate like strcat() and concatenate the entire
contents of one string to the end of another. The second version takes a third argument
that specifies the number of characters to conzatenate. That is, the second version

will only concatenate a specified number of characters from one string to the end of
another. Thus, assuming that you call your customized functions mystreat(), they

will have the following prototvpes:

3]
iy
N
-

vold mystrcat{char *sl, char *s2

vold mystrcat(char *sil, char

x
The first version will copy len characters froni s2 to the end of s1. The second version
will copy the entire string pointed to by s2 onto the end of the string pointed to by s1
and operates like strcat().

While it would not be wrong to implement two versions of mystrcat() to create the
two versions that vou desire, there is an easier way. Using a default argument, you can
create only one version of mystreat() that performs both functions. The following
program demonstrates this.

i // A customized verszion of strcat(

#include <ivustrear

v

#include <cstring>

int

Chapter 14: Function Overloading, Copy Constructors, and Default Arguments 377

mystroatistri, svr2, S5): ‘7 concatenate 5 chars
cout << strl << ‘\n';

styepy(strli, "This is a test"); // reset stri
mystrcat{strl, str2):; '/ concétenate entire string
cout. << strl << '\n’;

custom version of strcat (.

void mystrcat(char *sl, char *sz, int Ien)

find end of sl

while(*sl) sl++;

ifi{ien == -1) len = strien(sl};

while(*s2 && leni

sl = *s2; /7 copy chars
sl++
G2+
len-- ;
)
*sl = '\0'; // null terminate sl

Here, mystrcat() concatenates up to len characters from the string pointed to by s2
onto the end of the string pointed to by s1. However, if len is -1, as it will be when it is
allowed to default, mystrcat() concatenates the entire string pointed to by s2 onto s1.
(Thus, when len is -1, the function operates like the standard strcat() function.) By
using a default argument for len, it is possible to combine both operations into one
function. In this way, default arguments scmetimes provide an alternative to function
overloading.

Using Default Arguments Correctly

Although default arguments can be a very powerful tool when used correctly, they can
also be misused. The point of default arguments is to allow a function to perform its job
in an efficient, easv-to-use manner while still allowing considerable flexibility. Toward

378

C++: The Complete Reference

this end, all default arguments should reflect the way a function is generally used, or
a reasonable alternate usage. When there is nc single value that can be meaningfully
associated with a parameter, there is no reason to declare a default argument. In fact,
declaring default arguments when there is insufficient basis for doing so destructures
your code, because they are liable to mislead and confuse anyone reading your program.
One other important guideline you should follow when using default arguments is
this: No default argument should cause a harmful or destructive action. That is, the
accidental use of a default argument should not cause a catastrophe.

Function Overloading and Ambiguity

You can create a situation in which the compiler is unable to choose between two {or
more) overloaded functions. When this happens, the situation is said to be anbiguous.
Ambiguous statements are errors, and programs containing ambiguity will not compile.

By far the main cause of ambiguity involves C++'s automatic type conversions.
As you know, C++ automatically attempts to convert the arguments used to call a
function into the type of arguments expected by the function. For example, consider
this fragment:

int myfunc(double d);
’/
cout << myfunc('c'); // not an errcr, conversion applied

As the comment indicates, this is not an error because C++ automatically converts the
character c into its double equivalent. In C++, very few type conversions of this sort
are actually disallowed. Although automatic type conversions are convenient, they
are also a prime cause of ambiguity. For example, consider the following program:

#include <iostream>
using namespace std;

float myfunc (float 1i);
double myfunc (double 1i);

int main()
{
cout << myfunc(10.1) << " ", // unambiguous, calls myfunc(double)

!/

cout << myfunc(10); ambiguous

return 0;

Chapter 14:

float myfunc(float 1)
{

return 1i;

double myfunc (double 1)

r
L

return -1i;

—

a

Function Overloading,

Copy Constructors, and Default Arguments

Here, myfunc() is overloaded so that it can take arguments of either type float or
type double. In the unambiguous line, myfunc(double) is called because, unless
explicitly specified as float, all floating-point constants in C++ are automatically of
type double. Hence, that call is unambiguous. However, when myfunc() is called by
using the integer 10, ambiguity is introduced because the compiler has no way of
knowing whether it should be converted to a float or to a double. This causes an error
message to be displayed, and the program will not compile.

As the preceding example illustrates, it is not the overloading of myfunc() relative
to double and float that causes the ambiguity. Rather, it is the specific call to myfunc()
using an indeterminate type of argument that causes the confusion. Put differently, the
error is not caused by the overloading of myfunc(), but by the specific invocation.

Here is another example of ambiguity caused by C++'s automatic type conversions:

#include «<iostream>

using namespace std;

char myfunc{(unsigned char
char myfunc(char ch);

int main()
{
cout << myfunc(‘c');

cout << myfunc(88) << "

return 0;

{

return ch-1;

char myfunc (unsigned char

this calls myfunc(char)

"; /s ambiguous

ch)

379

380

C++: The Complete Reference

char myfunc{char ch)
{

return ch+1;

In C++, unsigned char and char are not inherently ambiguous. However, when
myfunc() is called by using the integer 88, the compiler does not know which function
to call. That is, should 88 be converted into a char or an unsigned char?

Another way you can cause ambiguity is by using default arguments in overloaded
functions. To see how, examine this program:

#include <iostream>

using namespace std;

int myfunc(int 1i);
int myfunc(int i, int q=1);

int main()
{

i

cout << myfunc(4, 5) << " *; // unambiguous
cout << myfunc(10),; // ambiguous
return 0;

int myfunc{int i)
{

return i;

int myfunc(int i, int 7)
{

return 1i*j;

Here, in the first call to myfunc(), two arguments are specified; therefore, no
ambiguity is introduced and myfunc(int i, int j) is called. However, when the second
call to myfunc() is made, ambiguity occurs because the compiler does not know whether
to call the version of myfunc() that takes one argument or to apply the default to the
version that takes two arguments.

Chapter 14: Function Overloading, Copy Constructors, and Default Arguments 381

Some types of overloaded functions are simply inherently ambiguous even if, at
tirst, they may not seem so. For example, consider this program.
// This program contains an error.
#include <iostream>
using namespace std;

void f(int x);

void f(int &x); // error
int main()
{

int a=10;

fta); // error, which f£()?

return 0;

void f(int x)
{

cout << "In f(int)\n";

void f({int &x)
{

cout << "In f(int &)\n";

et

As the comments in the program describe, two functions cannot be overloaded when
the only difference is that one takes a reference parameter and the other takes a normal,
call-by-value parameter. In this situation, the compiler has no way of knowing which
version of the function is intended when it is called. Remember, there is no syntactical
difference in the way that an argument is specified when it will be received by a
reference parameter or by a value parameter.

